The appropriateness of using the von Bertalanffy model to describe the growth of fishes throughout their lifecycle has been repeatedly questioned in both historical and recent fishery literature. The main criticism is that juveniles and adults grow at different rates, which cannot be expressed by a unique function. On the basis of knowledge gathered in the Mediterranean, a new growth model for demersal fish is proposed, adapting previous biphasic and size-at-maturity-dependent models. According to this new model, young of the year and early immature juveniles (j) and adults (a) tend to the same asymptotic size ($L_\infty = L_{\text{max ever}}$), but follow two distinct growth trajectories characterized by a decreasing completion rate ($K_j > K_a$). According to findings of literature, the individual length at maturity ($L_{50\%}$) is assumed to be the point of discontinuity. The new two-phase growth model is illustrated using data for red mullet, *Mullus barbatus* L., 1758 from the Central Mediterranean.

Parole chiave: Pesci demersali, modello di crescita bifasico, Mar Mediterraneo

Key words: Demersal fish, biphasic growth model, Mediterranean Sea

Summary

Un aggiornamento del modello di crescita bifasico per i pesci demersali, con un’applicazione alla triglia di fango (*Mullus barbatus* L., 1758) del Mediterraneo. L’adeguatezza del modello di Von Bertalanffy nella descrizione della crescita dei pesci è stata più volte messa in discussione in letteratura. Sulla base delle conoscenze acquisite nel Mediterraneo, si propone un nuovo modello di crescita bifasico per i pesci demersali, utilizzando come taglia di variazione del tasso di crescita quella corrispondente alla maturità sessuale ($L_{50\%}$). Il modello assume che i giovanili (j) e gli adulti (a) tendano alla stessa dimensione asintotica ($L_\infty = L_{\text{max ever}}$), seguendo due fasi di accrescimento distinte, caratterizzate da un tasso di crescita decrescente ($K_j > K_a$). Il modello di crescita proposto, applicato alla triglia di fango, *Mullus barbatus* L., 1758 del Mediterraneo centrale, viene discusso alla luce delle note incongruenze tra conoscenze biologiche e risultati del modello di Von Bertalanffy nella descrizione della crescita dei pesci.

RIASSUNTO

Key words: Demersal fish, biphasic growth model, Mediterranean Sea
INTRODUCTION

The difficulty of applying a unique, one-phase, growth curve to the whole lifecycle of an iteroparous fish is well known. Many studies have shown that growth rates vary throughout the lifecycle (larvae, post larvae, young of the year, immature juveniles and adults). The periods in which growth rates are relatively constant are called “stanzas” (Vasnetsov in Ricker, 1979), and the final “stanza” usually begins during the achievement of sexual maturity (Jones, 1989; Day & Taylor, 1997; Stamps et al., 1998; Porch et al., 2002; Tracey & Lyle, 2005; Araya & Cubillos, 2006; Charnov 2008; Quince et al., 2008a,b).

Almost all the proposed biphasic (and even multi-phase) growth models, however, have requirements that are almost never met by Mediterranean demersal fish, which are characterized by a short recruitment/juvenile period and a quick rarefaction of the adult fraction of the stock due to a chronic although steady state of growth overfishing (Mayno & Leonart, 2003).

This article presents a new approach for describing the growth of Mediterranean demersal stocks, which integrates the theoretical aspects of the discontinuous models and might allow the computation of growth parameters that are more coherent with the biology and resilience of the stocks.

To illustrate our approach we used a dataset containing the mean length-at-age of the red mullet, Mullus barbatus, L., 1758. This species was chosen since there is general agreement in the literature that the VBGF model provides a good fit for fish older than age group 2 and excessively large negative values of t_0 (Volian et al., 1998; Bianchini & Ragone, 2011; Caddy, 2009).

THE BIPHASIC GROWTH MODEL

The new growth model (herein NGM) is based on the most general parameterization of a two-phase von Bertalanffy growth function (cf. Craig, 1999; Porch et al., 2002):

$$L_t = \begin{cases} \frac{L_\infty}{1 - e^{-K_j(t-t_{0j})}} & \text{if } t < t_p \\ \frac{L_\infty}{1 - e^{-K_a(t-t_{0a})}} & \text{if } t \geq t_p \end{cases}$$

and $t_p = \frac{K_{t_{0d}} - K_{t_{0i}}}{K_a - K}$

within the NGM, where:

- L_t is the mean length (total length, TL) of a given age class (year, y).
- L_∞ is the asymptotic length herein defined as the longest possible length ($L_{max\ ever}$) a fish will achieve if it continued to live and grow infi-
An updated two-phase growth model for demersal fish

531

nately under the given conditions (BEVERTON & HOLT, 1957; RICKER, 1958, 1975). This is assumed to be the result of phylogeny, in other words, the genetically driven or pre-recorded growth programme (cf. PAULY, 1984; FREEDMAN & NOAKES, 2002) and is constant for a given species/stock in a given environment, and independent from food availability, water temperature and fishing pressure (BEVERTON, 1987; MANGEL & ABRAHAMS, 2001; REZNICK et al., 2002). In the model L_∞ is fixed at the largest documented size of the species ($L_\infty = L_{\text{max ever}}$).

- K is the rate of approach to L_∞, or the rate of completion of the growth pattern (BEVERTON & HOLT, 1959); the NGM assumes a K_j for young of the year and juveniles and a K_a for maturing and adult specimens. Both completion rates makes no assumptions about dependence on food availability in a given temperature regime (BEVERTON & HOLT, 1957, 1959; BEVERTON, 1987; MANGEL & ABRAHAMS, 2001; REZNICK et al., 2002; SHIN & ROCHET, 1998; LORENZEN & ENBERG, 2001).
- t_{0j} and t_{0a} represent the theoretical age at zero length according to the VBGF for juveniles and adults, respectively; $t_{0j} \sim 0$ (CADDY, 2009) and $t_{0j} < < t_{0a}$ are expected.
- t_ρ is the age at which the transition from K_j to K_a occurs; $t_\rho \sim t_m$ is expected (BEVERTON, 1992; DAY & TAYLOR, 1997; STAMPS et al., 1998; CRAIG, 1999), where t_m indicates the age corresponding to the length at 50% of sexual maturity (L_m).

THE FITTING OF THE MODEL PARAMETERS

To fit the biphasic VBGF defined above, two sets of lengths-at-age of red mullet (Mullus barbatus, L., 1758) females were used, one from a highly exploited stock off the southern coast of Sicily (LEVl et al., 1993; FIORENTINO et al., 2008a), and the other from a lightly exploited stock in the Gulf of Castellammare (North Sicily), an area that was closed to bottom trawl fishery in 1990 (FIORENTINO et al., 2008b; SIELI et al., 2011). Both modal components and whole otolith readings were employed to compute mean length-at-age and the corresponding standard deviation (sd) (Table 1); the inverse of the sd was used as a weight factor in the non linear regression, and the goodness of fit of the models was based on the Akaike’s information criterion (AIC; AKAIKE, 1974), modified for small sample sizes (AICu; MCQUARRIE & TSAI, 1998):

$$AICu = \frac{RSS}{n - k} + \frac{n + k}{n - k - 2}$$

where k and n denote the number of parameters and observations in the
model, respectively; and RSS is the residual sum of squares, which corresponds to the maximized value of the likelihood function (L) for least square fit, under the assumption that model errors are normally and independently distributed. In order to estimate the one- and two-phase VBGF, $L_\infty = L_{\text{max}}$ ever = 29 cm (recorded for a Tyrrhenian stock; Voliani, 1999) and $L_m = 12$ cm (Gancitano et al., 2010) were assumed.

RESULTS

Excluding data from juveniles from estimates of the NGM parameters led to an improvement in the fitting of the model for both the Strait of Sicily (AICu of 5.929 vs. 6.203) and Castellammare (5.758 vs. 5.922) (Table 2).

The two-phase VBGF indicated higher growth performance and more realistic biological values for t_0 in juveniles than adults (Table 2). The data and growth models are shown in Figs. 1 and 2. The main geographical difference concerned the higher homogeneity of K and t_0 among adults and combined fits for Castellammare and the better correspondence between t_m and t_p for

<table>
<thead>
<tr>
<th>Year</th>
<th>SOS TL (cm)</th>
<th>GoC TL (cm)</th>
<th>SOS sd</th>
<th>GoC sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>8.5</td>
<td>9.3</td>
<td>0.9</td>
<td>1.4</td>
</tr>
<tr>
<td>0.5</td>
<td>10.9</td>
<td>10.9</td>
<td>0.9</td>
<td>2.5</td>
</tr>
<tr>
<td>0.5</td>
<td>11.1</td>
<td>3.5</td>
<td>0.5</td>
<td>18.6</td>
</tr>
<tr>
<td>0.5</td>
<td>11.9</td>
<td>3.5</td>
<td>0.8</td>
<td>19.6</td>
</tr>
<tr>
<td>0.5</td>
<td>12.4</td>
<td>4.5</td>
<td>0.5</td>
<td>19.8</td>
</tr>
<tr>
<td>1.5</td>
<td>13.8</td>
<td>11.6</td>
<td>1.5</td>
<td>21</td>
</tr>
<tr>
<td>1.5</td>
<td>13.3</td>
<td>12.1</td>
<td>1.5</td>
<td>20.3</td>
</tr>
<tr>
<td>1.5</td>
<td>14.1</td>
<td>4.5</td>
<td>1.4</td>
<td>21</td>
</tr>
<tr>
<td>1.5</td>
<td>14.6</td>
<td>4.5</td>
<td>1.1</td>
<td>21.4</td>
</tr>
<tr>
<td>2.5</td>
<td>15.6</td>
<td>14.3</td>
<td>1.5</td>
<td>21</td>
</tr>
<tr>
<td>2.5</td>
<td>15.7</td>
<td>15.2</td>
<td>1.5</td>
<td>22.4</td>
</tr>
<tr>
<td>2.5</td>
<td>16.8</td>
<td>6.5</td>
<td>1.1</td>
<td>23.3</td>
</tr>
<tr>
<td>2.5</td>
<td>17</td>
<td>6.5</td>
<td>1.3</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>15.7</td>
<td>6.5</td>
<td>1.1</td>
<td>19.8</td>
</tr>
<tr>
<td>2.5</td>
<td>16.2</td>
<td>7.5</td>
<td>1.3</td>
<td>23.2</td>
</tr>
<tr>
<td>2.5</td>
<td>17.1</td>
<td>8.5</td>
<td>1</td>
<td>24.5</td>
</tr>
<tr>
<td>3.5</td>
<td>17.4</td>
<td>16.9</td>
<td>1.5</td>
<td>23.5</td>
</tr>
<tr>
<td>3.5</td>
<td>18.9</td>
<td>17.2</td>
<td>1.5</td>
<td>24.8</td>
</tr>
</tbody>
</table>

Table 1: Mean total length (TL; cm) at age class (AC, year) for the red mullet females from the Strait of Sicily (SoS) and Gulf of Castellammare (GoC). Sd denotes the standard deviation of the mean.
the Strait of Sicily. The expected age at which the transition from K_j to K_a occurs (t_{ρ}) was very close to the indicates the age corresponding to the length at 50% of sexual maturity (t_m), in the case of red mullet of the Strait of Sicily. On the contrary t_{ρ} was lower than t_m in the stock of the Castellammare Gulf.

It is worth noting the differential time required to approach 95% of the L_∞ with the juveniles or adults K (~7-9 and 15-18 y respectively) (Table 2), figures that are close to the maximum observed age reported for exploited (3-10 y; Campillo, 1992; Tserpes et al., 2002; Rizzo et al., 2005) and virtually unexploited (10–11 y; Campillo, 1992; Froese & Pauly, 2010; present results for Castellammare) Mediterranean red mullet females.

DISCUSSION

The proposed model assumes that L_∞ is not dependent on food availability, in contrast with the classic theory of density-dependent growth (Beverton & Holt, 1957, 1959; Shin & Rochet, 1998; Lorenzen & Enberg, 2001).

Conceptually, we believe that the reported variability in literature of L_∞ estimates reflects the variability in the L_m figures at hand (Stamps et al., 1998). In particular, two school of thoughts might be considered in explaining the L_m variability: the documented inverse interaction between the intensity of food available “pro capite” and L_m (Beverton, 1987; Mangel & Abrahams, 2001; Reznick et al., 2002) or the supposed inverse relationship between the amount of fishing and L_m (Rochet, 1998), due to the “thinning” phenomenon (i.e.

Table 2

<table>
<thead>
<tr>
<th>Location Parameters</th>
<th>Location Parameters</th>
<th>Location Parameters</th>
<th>Location Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_\text{max ever}$</td>
<td>SOS Juveniles</td>
<td>SOS Adults</td>
<td>SOS Combined</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>k</td>
<td>0.385</td>
<td>0.178</td>
<td>0.187</td>
</tr>
<tr>
<td>t_0</td>
<td>-0.68</td>
<td>-2.138</td>
<td>-2.05</td>
</tr>
<tr>
<td>$L_\text{m, at 95% } L_\text{max ever}$</td>
<td>27.6</td>
<td>27.6</td>
<td>27.6</td>
</tr>
<tr>
<td>Age at 95% $L_\text{max ever}$</td>
<td>7.1</td>
<td>14.7</td>
<td>14.0</td>
</tr>
<tr>
<td>L_m</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Age 50% at maturity</td>
<td>0.71</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Expected age at transition</td>
<td>0.57</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>
reduction of the strength of the cohort) and quick removal of the slower-growing and later maturing component present in the pristine stock.

There is some evidence that L_{max} is not a reliable estimator of L_∞ (Matthews & Samuel, 1990). The estimation of L_∞ in the classical VBGF model is strongly influenced by the present L_{max}, which generally reflects the level of exploitation exerted on the stock and the almost linear growth after reproduction (cf. Abella et al., 1997). In such a situation, it is difficult to accurately estimate L_∞ (cf. Bliss, 1970), and the scientist involved in the analysis may use more or less conscious subjective forcing to figure out a compromise. Consequently, it is likely that current Mediterranean VBGF parameters are strongly affected by the different L_{max} arising due to the interaction between the rate of removal by fisheries and the more or less slow convergence to a unique asymptotic size (cf. Aldrich & Lawler, 1996). More concisely, it is possible that $L_{\text{max}} - L_\infty$ instead of the “true” L_∞ is the parameter that is influenced by food availability and fishing pressure and consequently also the K. This new interpretation might also explain the contradictions apparent among the unit stock differentials in red mullet (cf. Levi et al., 1992; Sonin et al., 2007) despite their relatively high genetic homogeneity (Garoia et al., 2004;
The curves in Figs. 1 and 2 closely resemble Fig. 1 in Stamps et al. (1998), the difference being that the NGM predicts that very old adults will converge very slowly towards a unique L_∞. Practically, the two-phase VBGF gives a more unambiguous and objective (L_∞ is fixed at the upper documented size limit) and realistic (higher growth and $t_0 \sim 0$ in juveniles) growth pattern, with a marginal departure from the adult trajectory described by the one-phase curve parameters.

It is well known that growth depends on a complex interaction between energy allocation, foraging strategy, risk of predation, reproductive behaviour, short and long-term density dependence effects and the incidence of senescence (cf. Ragonese, 2004), i.e. the overall physiological performance becomes poorer as specimens become older independently from the biotic and abiotic environmental conditions (Cushing, 1981; Roff, 1983; Reznick et al., 2002).

Females of the Mediterranean red mullet are generally considered as non-territorial low trophic species (Badalamenti et al., 2000) that have evolved a saturation reproductive pattern (production of large numbers of eggs) (Garrod & Horwood, 1984), a high initial growth rate, precocious

![Graph](https://via.placeholder.com/150)

Figure 2 — Scatter-plot of the mean total length (TL; cm) vs. age class (year) and corresponding juveniles and adults fits for the red mullet females from the Gulf of Castellamare (Southern Tyrrhenian; Mediterranean Sea). The vertical bars denote the standard deviation of the mean. The two phase growth curve of the red mullet (juveniles in black and adults in grey) is reported as solid line.
maturity and a reduction in growth thereafter (Fiorentino et al., 1998; Tserpes et al., 2002; Sonin et al., 2007). Such life history traits reflects partially the stress induced by the oligotrophic, warm and salty Mediterranean waters where the species lives (Pauly, 1981, 1984) but most likely they are the results of adaptation to other factors. Another explanation was the diversion of energy from somatic growth to reproduction and a reduction in foraging to reduce the risk of predation (Roff, 1983), but since the general rule is that minimum food intake occurs around and during the spawning period, and that in non-territorial fish females are larger than males, other explanations are possible, such as that more time is devoted to mating, more room is left for the enlarging ovary, and limiting factors (such as oxygen requirements) other than food limitations may be present (Pauly, 1981, 1998).

Size and age at maturity trajectories in fish also reflect the interaction between genetic and phenotypic plasticity, pristine stock abundance and distribution, and the response to stress encountered in the changing environments in which fish have evolved and live. Whatever the cause, reproduction costs represent an increasing strain on the metabolism of maturing and mature fish as they grow larger and older, decreasing the resources available for somatic growth. Consequently, it is not surprising that L_m might be reduced in heavily exploited stocks (Rochet, 1998), along with the median size, leading to the so-called “tropicalization” of highly depleted resources (Stergiou, 2002).

The abovementioned problems hamper the use of a one-phase growth model for the whole lifecycle and the assumption of constant parameters, which on the contrary may vary according to the life phase.

These limitations have led to the development and proposal of different two-phase growth models (Charnov, 1993; Porch et al., 2002; Tracey & Lyle, 2005; Charnov, 2008; Quince et al., 2008a,b). The application of these models, however, generally requires representative size-at-age samples (cf. Porch et al., 2002) and a prolonged “juvenile” phase (cf. Quince et al., 2008b). Such requirements are difficult to meet when considering Mediterranean demersal bony fish resources, which are characterized by precocious sexual maturity and for which it is difficult to obtain representative samples of the highly depleted adult fraction of the stock (Lleonart, 2005; Papaconstantinou & Farrugio, 2000; Caddy, 2009; GFCM, 2010).

Furthermore, to our knowledge, all discontinuous VBGF versions assume only one (Craig, 1999) or different (Stamps et al., 1998) asymptotic sizes for the adults. The latter approach gives a sound explanation for the discrepancy between the asymptotic and the maximum-ever size; unusually large sizes might reflect rare cases of “always juveniles”, later maturing and very lucky old mature specimens which have had the opportunity to achieve the
full growth potential of the stock.

The “always juveniles” category deserves some comment: there is growing evidence that both skipping spawning after the onset of sexual maturity (cf. Rideout et al., 2005) and the existence of large and old specimens with atresic and undeveloped gonads (Freedman & Noakes, 2002) in iteroparous fish are more frequent phenomena than previously believed.

On the contrary, by considering \(L_\infty \) as a genetically fixed parameter, the new growth paradigm assumes that growth rates in the case of red mullet remain relatively high in the first 1–2 years of life and then decline after the transition to the adult stage; at 1.5 years of age, present estimates indicate a mean length of 13–16 and 12–14 cm for juveniles and adults respectively, size limits that encompass the majority of specimens caught by bottom trawling (median length 14–16 cm; Samed, 2002).

We believe our approach to describing the growth of fish may also help solve the apparent contradiction of growth parameters of VBGF derived from samples covering different phases of fish populations. In the Mediterranean, it is well known that the nets used by trawlers mainly catch juvenile hake while long-line fishing mainly captures adults (Oliver & Massuti, 1995; Abella et al., 1997). The selection of different life phases in samples used to study the growth of this species can therefore affect the results, producing biased estimates in favour of juvenile or adult patterns on the basis of the age groups from which the length/age data are obtained.

On the other hand the recent contrasting results that form the basis of the debate on hake growth in the Eastern Atlantic and in the Mediterranean, based on VBGF parameters obtained by tagging, could be reconstructed in the light of our novel approach using a two-phase growth model. Following publication of the study by De Pontual et al. (2006) and examining the growth of hake in the Bay of Biscay (Eastern Atlantic Ocean), Mellon-Duval et al. (2010) proposed a new growth pattern for hake in the Gulf of Lions (Western Mediterranean). Fixing \(L_\infty \) at values estimated by Aldebert & Recasens (1995) (100.7 and 72.8 cm TL for females and males respectively), Mellon-Duval et al. (2010) estimated the K parameter as the mean value of individual increments of length within a known time interval. Since the length at 50% of mature fish is 38.0 cm TL for females and 28.8 cm TL for males (Recasens et al., 1998), the recorded mean growth rate (0.04 cm d\(^{-1}\)) derived from juveniles fish, being TL lower than 24 cm in 96 out 108 individuals. These growth rates produced a K value that was double that reported by Aldebert & Recasens (1995). In the light of our NGM, the new K estimated by Mellon-Duval et al. (2010) (K=0.236) should be interpreted as \(K_i \) while the old value, obtained from otolith readings including many adult
specimens and reported by Aldebert & Recasens (1995) \((K=0.124)\), should be considered as \(K_a\).

In conclusion, our novel approach to the two-phase growth model may help not only with estimations of more realistic description of growth, but also improve the reconstruction of more accurate age structures when length distributions from surveys or catch data will be sliced by using growth curve to stock assessment purpose. Finally, it is well known that natural mortality \((M)\) is one of the main “critical” parameter in analytical stock assessment (Mertz & Myers, 1997) and its estimation is often obtained by VBGF parameters (cf. Ragonese et al., 2002). The estimation of separate \(K\) for fast growing (juveniles) or low growing (adults) phases of fish life can allow to the a more reliable estimation of natural mortality, to be considered in assessing the potential productivity of commercial stocks.

REFERENCES

An updated two-phase growth model for demersal fish

Authors’ address — F. FIORENTINO, V. GANCITANO, S. GANCITANO, P. RIZZO & S. RAGONESE, Consiglio Nazionale delle Ricerche (CNR), Istituto per l’Ambiente Marino Costiero (IAMC) via Luigi Vaccara, 61 - 91026 Mazara del Vallo (TP, I); e-mail: fabio.fiorentino@iamc.cnr.it